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Ethanol is the most common human teratogen, and its consumption during
pregnancy can produce a wide range of abnormalities in infants known as
fetal alcohol spectrum disorder (FASD). The major characteristics of FASD
can be divided into: (i) growth retardation, (ii) craniofacial abnormalities, and
(iii) central nervous system (CNS) dysfunction. FASD is the most common
cause of nongenetic mental retardation in Western countries. Although the
underlying molecular mechanisms of ethanol neurotoxicity are not completely
determined, the induction of oxidative stress is believed to be one central
process linked to the development of the disease. Currently, there is no
known effective strategy for prevention (other than alcohol avoidance) or
treatment. In the present review we will provide the state of art in the
evidence for the use of antioxidants as a potential therapeutic strategy for the

treatment using whole-embryo and culture cells models of FASD. We
conclude that the imbalance of the intracellular redox state contributes to the
pathogenesis observed in FASD models, and we suggest that antioxidant
therapy can be considered a new efficient strategy to mitigate the effects of
prenatal ethanol exposure.
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Introduction
Alcohol is known to be a teratogen and its consumption
during pregnancy can produce a wide range of adverse
effects in the developing fetus. The severity of fetal dam-
age due to ethanol exposure depends on several factors
which include the timing, pattern, and dose of consump-
tion (Abel and Hannigan, 1995). Maternal ethanol con-
sumption can develop a spectrum of physical, cognitive,
and behavioral disabilities in newborns known as fetal
alcohol spectrum disorder (FASD). The most severe form,
that includes morphological abnormalities is defined as
fetal alcohol syndrome (FAS) (de Sanctis et al., 2011; Joya
et al., 2012; Memo et al., 2013). The classical dysmorphic
facial features of FAS include microcephaly, a rather flat

midface with short palpebral fissures, low nasal bridge
with short nose and long smooth or flat phylum with a
narrow vermilion of the upper lip (de Sanctis et al., 2011).
This disease is also characterized by failure to thrive, that
starts in the prenatal age and persists postnatally, and by
neurocognitive defects (Memo et al., 2013). Using these
criteria, the diagnosis of FAS missed many individuals
without phenotipical diagnostic clues. The term FASD was
not intended to be used as a clinical diagnosis, but an
umbrella containing diagnoses as FAS, partial FAS and
alcohol related neurodevelopmental disorders (ARND).
FASD includes the range of individuals who have from the
full syndrome to only a few issues about learning and
behavior, and no facial or growth signs (May et al., 2010).
Currently, in Europe there are no systematic data on FAS
and FASD prevalence, nor on prenatal exposure to ethanol.
In Canada, the prevalence of FAS and FASD has been
reported to be 1 to 3 and 9 per 1000 live births, respec-
tively, higher than the FAS prevalence observed in the
United States (0.5–2.0 per 1000 live births (Goh et al.,
2008).

It is well known that in adults, ethanol-induced dam-
age is mediated by induction of oxidative stress and its
plays a major role in different mechanisms such in the
case of liver injury (Dey and Cederbaum, 2006). Similarly,
prenatal ethanol exposure has been shown to cause an
increase in oxidative stress in developing organs, including
the brain (Reyes et al., 1993; Heaton et al., 2003). Even a
brief exposure to ethanol, the fetal brain alters its redox
balance (Dong et al., 2010). On the other hand, it is gener-
ally admitted that antioxidants treatment cause the oppo-
site effect (Busby et al., 2002; Neese et al., 2004).

The brain is the principal target tissue of prenatal
ethanol exposure and it possesses the highest oxygen
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metabolic rate in the body because its cells use 20% of
the total oxygen consumed by the organism (Sokoloff,
1999). For this reason, it presents the highest quantity of
reactive oxygen species (ROS) production during oxidative
metabolism. Moreover, the production of ROS can be
increased by the presence of high content of unsaturated
fatty acids that can be substrates for ROS production. Fur-
thermore, the antioxidant defense system of the brain is
limited with respect to other organs. Particularly, the activ-
ities of antioxidant enzymes such superoxide dismutase
(SOD), catalase, and/or glutathione peroxidase (GPx) are
lower (Floyd and Carney, 1992). For all of these reasons
mentioned above, the neural fetal cells are more vulnera-
ble to neurotoxic effects of oxidative stress than the adult
brain cells, because the levels of antioxidant enzymes and
nonenzymatic endogenous antioxidants in the developing
fetus are lower compared with adults (Bergamini et al.,
2004).

Oxidative stress is a general term used to describe an
imbalance between the systemic manifestation of ROS, and
a biological system’s ability to readily detoxify these reac-
tive intermediates or to repair the resulting damage. The
main intracellular source of ROS is the oxidative phospho-
rylation generated by the mitochondria. Moreover, other
enzymes such xanthine oxidase and NADPH oxidases
(NOX/XOX) can produce ROS in the cytoplasm. NOX is a
multi-subunit enzyme complex that is activated and
induced by inflammatory signals (Infanger et al., 2006).
This inflammatory signals include several external sources
such UV light, chemical reagents, cigarette smoke, drugs
and/or ethanol consumption (Zadak et al., 2009). Activa-
tion of glial cells, especially microglia, that release of pro-
inflammatory factors (TNFa, IL-1b, IL-6, etc.) and ROS
have been implicated in several models of neurodegenera-
tion (Lucas et al., 2006; Block and Hong, 2007). ROS react
with cellular molecules including proteins, lipids and DNA
causing genetic alterations (Finkel and Holbrook, 2000)
and finally culminate in cell death (activation of apoptosis
cascades). In humans, oxidative stress is a pathogenic
mechanism involved in the development of cancer (Halli-
well, 2007) Parkinson’s disease (Valko et al., 2007) fragile
X syndrome (de Diego-Otero et al., 2009) or autism (James
et al., 2004).

The organism presents a variety of defense mecha-
nisms that can be referred to as the endogenous antioxi-
dant system (Halliwell and Gutteridge, 1995). Endogenous
antioxidants can inhibit the ROS formation or promote the
free radicals scavenging. These endogenous antioxidants
can be broadly divided into: nonenzymatic and enzymatic
origin. Endogenous nonenzymatic antioxidants include thi-
ols and glutathione (GSH) (Halliwell, 2006). On the other
hand, enzymatic antioxidants include: (1) SOD, (2) cata-
lase, (3) the glutathione system, which encompasses the
enzymes: (3.1) glutathione reductase (GR) and uses GSH
and NADPH as co-factors. (3.2.) glutathione peroxidase

(GPx) reduces hydrogen peroxide and other organic perox-
ides at the expense of GSH, which is in turn oxidized to
form glutathione disulfide (GSSG) and (3.3.) glutathione
S-transferases (GSTs) that catalyze the conjugation of the
reduced form of GSH to xenobiotic substrates for the pur-
pose of detoxification. In the brain, most GST is located in
glial cells (which are also rich in GSH), helping protect
neuronal populations that have a low content of this co-
factor (Astor et al., 1988; Hayes and Strange, 1995; Salinas
and Wong, 1999). Given its extensive functions list, GSH is
probably the most important endogenous nonenzymatic
antioxidant.

It is well known that alcohol produces high levels of
ROS production through its metabolism (Fig. 1). Ethanol is
metabolized to acetaldehyde by the alcohol dehydrogenase
(ADH) in the liver. Alternatively, ethanol can also be
metabolized by cytochrome P450 2E1 present in the liver
and brain. Of interest, the reaction catalyzed by cyto-
chrome P450 2E1 leads to an increase in the generation of
acetaldehyde and hydroxyl radicals in both tissues. Acetal-
dehyde can then be further oxidized into acetate by the
enzyme acetaldehyde dehydrogenase, these reaction
results in an increase in the activity of respiratory chain
and consequently produces ROS.

An increasing body of evidence has postulated the role
of oxidative stress in FASD evidenced by ROS production
in animals and in vitro models (Heaton et al., 2002, 2003;
Smith et al., 2005; Kane et al., 2008; Dong et al., 2010).
These evidences have been related to the damage on: (1)
lipid peroxidation (Henderson et al., 1995; Chen et al.,
1997; Perez et al., 2006), (2) protein peroxidation (Marino
et al., 2004; Shirpoor et al., 2009), and (3) DNA (Chu
et al., 2007; Dong et al., 2010).

The principal difficulty in this scenario is the heteroge-
neous experimental designs available in the literature.
Parameters such: methodology, ethanol exposure period,
peak of blood alcohol concentration (BAC) reached and
the time of analysis, as well as tissues analyzed and

FIGURE 1. Ethanol metabolism and induction of oxidative stress. Main molecu-

lar mechanisms which ethanol causes oxidative stress. ADH, alcohol dehydro-

genase; ALDH, aldehyde dehydrogenase; NAD, nicotinamide adenine

dinucleotide; NADH, reduced form of NAD; ROS, reactive oxygen species.
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markers evaluated, are not standardized due to make com-
parisons between experiments is impossible. Given this
scenario, the present review is focused on the most recent
findings in novel antioxidant therapeutic approach for the
mitigation of prenatal alcohol exposure effects.

Antioxidant Supplementation as a Therapeutic
Intervention for FASD Prevention
Despite the role of oxidative stress in FASD is also con-
firmed by numerous studies showing the beneficial
impact of antioxidant therapy upon prenatal ethanol
exposure effects, there are a great number of experimen-
tal variables (including the mode and period of ethanol
exposure, the antioxidant selected, the time of adminis-
tration and the age of animals at the time of analysis as
well as the neuropathological parameters evaluated). This
fact complicates direct comparison among the studies
published. Thus, to facilitate the following discussion, the
experimental parameters and the major findings in a
wide range of literature studies are summarized in
Table 1.

EFFECT OF ANTIOXIDANT SUPPLEMENTATION ON THE AMELIORATION
OF BIRTH DEFECTS

The defects associated with FASD are variable and lie
along a continuum spectrum going from the most severe
form, represented by deficiencies in brain growth (reduced
head circumference and/or structural brain anomaly) to
distinct facial features (microcephaly, short palpebral fis-
sures, thin upper lip and/or smooth philtrum) (Jones and
Smith, 1973). Related with this, some in vivo studies have
indicated that antioxidant treatments can prevent or
reduce growth retardation and/or the occurrence of mal-
formations as a consequence of ethanol exposure during
development. Using Xenopus laevis co-treated with vitamin
C, Peng et al. showed a decrease in microencephaly inci-
dence and growth retardation (Peng et al., 2005). Further-
more, Chen et al. administered ethanol to pregnant mice
dams in combination with EUK-134, a synthetic
manganese-porphyrin complexe similar to SOD and cata-
lase. The co-treatment with EUK-134 reduced the inci-
dence of forelimb malformations in the offspring pups
(Chen et al., 2004). The treatment with vitamin E in preg-
nant mice dams treated with ethanol normalized fetal
development (Wentzel et al., 2006). Similarly, black gin-
seng (Panax ginseng) improved most of the morphological
scores in mice embryos (Lee et al., 2009). Another birth
outcome commonly seen in children exposed prenatally to
ethanol are congenital heart defects (Karunamuni et al.,
2014). Using zebrafish embryos as animal model Reimers
et al. evaluated the effect of lipoic acid, vitamin E and Tro-
lox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic
acid, a powerful free radical scavenger). These antioxi-
dants partially attenuated the pericardial edema incidence
(Reimers et al., 2006).

EFFECT OF ANTIOXIDANT SUPPLEMENTATION ON THE
NEUROANATOMICAL ARCHITECTURE

In several cases, antioxidant treatment was also shown to
have a positive impact at the neuroanatomical level. In
this sense, embryos prenatally exposed to ethanol and
treated with vitamin E attenuated the reduction in the
number of Purkinje cells in the lobule I of the cerebellum
(Heaton et al., 2000a). Similar results were obtained by
Lee et al. using black ginseng as a therapeutic approach.
Embryos co-treated with ethanol and black ginseng
showed similar head length compared with the control
group (including fore-, mid-, and hindbrain) (Lee et al.,
2009). Using a Guinean pig model treated with a combina-
tion of high doses of vitamin C and E, protects against the
loss of hippocampal weight (Nash et al., 2007). In accord-
ance with these results, Marino et al. observed an amino-
ration of hippocampal neuronal loss (Marino et al., 2004).
Finally, co-treatment of ethanol-exposed pregnant dams
with silymarin showed to be useful to prevent the
ethanol-induced impairment in corpus callosum develop-
ment (Moreland et al., 2002). On the other hand, not all
the studies reported beneficial results. U83836E, a new
vitamin E derivate generated by Upjohn Company (Kala-
mazoo, MI), did not attenuate neonatal alcohol-induced
microencephaly or Purkinje cell loss in lobule I (Grisel and
Chen, 2005). In fact, it has been reported that the protec-
tive efficacy of U83836E may be dose related, and high
doses of the drug can be cytotoxic (Mertsch et al., 1998).
Anthocyanins, a large subgroup of flavonoids present in
many vegetables and fruits, are safe and potent antioxi-
dants that can cross the blood–brain barrier and be dis-
tributed in the CNS (Passamonti et al., 2005). An example
of anthocyanins is cyanidin-3-glucoside (C3G) obtained
from blackberries. C3G has been demonstrated that
presents a potent antioxidant and anti-tumor capacity
(Ding et al., 2006). Promising results provided by Chen
et al. showed that C3G can ameliorate ethanol-induced
neuronal death blocking GSK3b activation (Ke et al.,
2011).

The role of antioxidants treatment in relation to behav-
ioral deficits is inconclusive and not all experimental or
clinical studies find beneficial effects. In some cases, the
neuroprotection conferred by antioxidant therapy was
translated into an improvement of the behavioral deficits
and learning abnormalities associated with perinatal etha-
nol exposure (Busby et al., 2002; Vink et al., 2005; Miller
et al., 2013). For example, Busby et al. co-administered
silymarin and ethanol throughout gestation and detected
that silymarin improve several behavioral deficits in the
rat adult offspring (Busby et al., 2002). The co-treatment
with vitamin C and E in pregnant Guinean pigs mitigated
the ethanol-induced deficit in the task-retention compo-
nent of the water-maze activity. However, other study,
using the same vitamin regimen did not mitigate the
ethanol-induced impairment in hippocampal long-term
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potentiation (Nash et al., 2007). Overall, the results of
these studies indicate that maternal administration of
high-dose vitamins C plus E throughout gestation has lim-
ited efficacy and potential adverse effects (such low birth
weight) as a therapeutic intervention (Poston et al., 2006).
Furthermore, a recent prospective observational study
conducted by a Canadian work team in pregnant women
supplementing with mega-doses of vitamin E, detected an
apparent decrease in mean birth weight that could not be
explained by other variables including maternal age, gesta-
tional (Boskovic et al., 2005). In light of the results, the
EViCE (Effectiveness of Vitamin C and E in alcohol exposed
pregnancies) study was suspended (Goh et al., 2007).

EFFECT OF ANTIOXIDANT THERAPY ON THE ENDOGENOUS OXIDATIVE
STRESS LEVELS

The use of compounds with antioxidant properties has
also been consistently shown to reduce oxidative stress
levels and/or to increase the endogenous antioxidant
capacity in the rodent brains of different models of FASD.
The antioxidant vitamin C inhibited ROS production in
Xenopus laevis embryos exposed to ethanol (Peng et al.,
2005). Vitamin E is the natural antioxidant most com-
monly used and several studies have also shown its bene-
ficial effects in decreasing oxidative stress in different
models of FASD. Recently, in offspring rat pups exposed
prenatally to ethanol, vitamin E reversed the levels of pro-
tein and lipid oxidation in both hippocampus and cerebel-
lum (Shirpoor et al., 2009). In the same tissue, using rat
pups vitamin E, alleviated oxidative stress (Marino et al.,
2004). Similarly, maternal vitamin E treatment restores
the fetal hepatic isoprostanes (Wentzel et al., 2006). (–)-
Epigallocatechin-3-gallate (EGCG) is another powerful anti-
oxidant and is believed to be responsible for most of the
health benefits attributed to green tea consumption (Nagle
et al., 2006). Long et al., using a FASD murine model found
that EGCG provided significant protection against ethanol-
associated embryonic developmental retardation. This pro-
tection seems to be mediated by its antioxidative proper-
ties (Long et al., 2010). Resveratrol (3,5,40-trihydroxy-
trans-stilbene) has been shown to be a promising natural
compound with antiapoptotic, free radical-scavenging, and
antilipoprotein peroxidation properties (Shakibaei et al.,
2009). Using a mice model of FASD, the treatment with
resveratrol, before ethanol exposure, restores nuclear fac-
tor (erythroid-derived 2)-like 2 (Nrf2) transcription factor
levels in cerebellum granule neurons (CGNs) and in the
same tissue, and this fact promotes the survival of these
cells (Kumar et al., 2011). Nrf2 has been demonstrated to
be a critical transcription factor that regulates the induc-
tion of phase 2 antioxidant enzymes detoxifying and anti-
oxidant genes (Zhang, 2006; Nguyen et al., 2009).
Thymoqinone (TQ), the active component of Nigella sativa
seeds, has broad and versatile pharmacological effects.
These effects include strong antioxidant activity against

free radical-generating agents (Houghton et al., 1995). TQ
stimulates resistance to oxidative stress decreasing the
elevated levels of malondialdehyde (MDA), and stimulating
catalase and SOD expression (Al-Majed et al., 2006). Sul-
foraphane (SFN) is a natural isothiocyanate, found abun-
dantly in broccoli sprouts. Compelling evidence indicates
that SFN-rich broccoli sprouts and other SFN food sources
trigger the induction of phase 2 detoxifying genes and
antioxidant enzymes, through activation of Nrf2 signaling,
and can aid in preventing cancer and other diseases (Din-
kova-Kostova, 2002). Chen et al. (2013) showed the Nrf2-
mediated antioxidant response on neural crest cells
(NCCs) exposed to ethanol. Capsaicin (8-methyl-N-vanillyl-
6-nonemide) is the major pungent principle of hot peppers
of the plant genus Capsicum. Kim et al. treated with capsa-
icin embryos exposed prenatally to ethanol. These animals
recovered their SOD activity and GPx and GPx mRNAs
expression (Kim et al., 2008). Lipoic acid and its reduced
form, dihydrolipoic acid (DHLA) eliminate hydroxyl radi-
cals and hypochlorous acid with a potency comparable to
GSH (Biewenga and Bast, 1995). Tert-butylhydroquinone
(tBHQ) increases Nrf2 protein stability through inhibition
of the Keap1-mediated ubiquitination. An in vitro model
that used NCCs co-exposed to ethanol and tBHQ showed
less oxidative stress and apoptosis (Yan et al., 2010).
Diphenylene Iodonium (DPI) is a NOX inhibitor. NOX
enzymes can catalyze NADPH-dependent reduction of oxy-
gen to generate superoxide anion (Banfi et al., 2003) and
interestingly, ethanol activates NOX and the subsequent
ROS generation (Wang et al., 2012). Dong et al. (2010)
examined the effect of co-administration of DPI with etha-
nol on pregnant mouse. The results support the hypothe-
sis that DPI is a promising molecular target for blocking
NOX, a critical source of ROS in ethanol-exposed embryos.
3H-1,2 dithiole-3-thione (D3T) is a potent cancer
chemopreventive agent that prevents mutation and pro-
vides protection against neoplasia initiation (Otieno et al.,
2000). In addition, activation of the Nrf2 pathway, by oral
administration of D3T, has recently been reported to con-
fer partial protection against 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP)-induced neurotoxicity (Burton
et al., 2006). The protective effects of D3T in animals have
been associated with induction of the detoxifying and anti-
oxidant enzymes SOD, catalase and c-glutamylcysteine syn-
thetase (c-GCS) (Otieno et al., 2000; Munday and Munday,
2004; Cao et al., 2006). Dong et al. (2008) exposed mice
embryos to D3T decreasing ROS generation.

PROTECTIVE EFFECT OF ANTIOXIDANTS USING IN VITRO MODELS

The beneficial role of antioxidants have been corroborated
by several in vitro studies (Mitchell et al., 1999a ; Heaton
et al., 2000a; Lee et al., 2009). A prospective apoptotic
effect has been described for vitamin C. Using primary-
cultured neuronal cells co-treated with Vitamin C and
ethanol the expression of Bax, caspase-9, caspase-3 and
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cytochrome-c decreased while the expression of antiapop-
totic Bcl-2 protein increased significantly (Naseer et al.,
2011). Furthermore, vitamin E has been extensively dem-
onstrated that prevents alcohol-induced cell loss using in
vitro models (Mitchell et al., 1999a; Heaton et al., 2000a;
Siler-Marsiglio et al., 2004, 2005). For example, neuronal
viability was significantly higher in cell cultures previously
treated with ethanol and maintained on vitamin E or
b-carotene (Mitchell et al., 1999b). A recent study has
demonstrated that EGCG and resveratrol could protect
fetal rhomboencephalic neurons from ethanol-induced
apoptosis (Antonio and Druse, 2008). In agreement with
that, resveratrol prevents ethanol-induced apoptosis dur-
ing mouse blastocyst development (Huang et al., 2007).
Ginkgolide B (GB), originally extracted from Ginkgo biloba
leaves, is one of the major components of traditional Chi-
nese medicine (Maclennan et al., 2002). It has been shown
that GB can scavenge free radicals and inhibit seryl and
aspartyl proteases (Brunetti et al., 2006), protecting
against neural damage. Preliminary in vitro results have
demonstrated the powerful antioxidant characteristics of
GB inhibiting ethanol-induced cell apoptosis (Zhang et al.,
2011). Another antioxidant with natural origin is curcu-
min, the principal curcuminoid found in turmeric. Curcu-
min has potent antiamyloid (Wang et al., 2010) anti-
ischemic (Shukla et al., 2008) and anti-inflammatory prop-
erties (Basnet and Skalko-Basnet, 2011). All of these char-
acteristics seem to be mediated by its pharmacological
actions with respect to its antioxidant effect. As a conse-
quence, curcumin presents protective effects against
ethanol-induced apoptosis. This was initially observed
using primary fetal rhomboencephalic neurons (Antonio
and Druse, 2008) and postnatal pup rats (Tiwari and Cho-
pra, 2013). Recently, it has been reported that TQ, by
means of direct reduction of intracellular ROS, protects
against cell death induced by serum/glucose deprivation

in PC12 cells by means of a direct reduction in intracellu-
lar ROS (Mousavi et al., 2010). Moreover, TQ maintained
normal physiological mitochondrial transmembrane poten-
tial. These findings suggest that TQ is a potential protec-
tive agent against ethanol-induced neuronal apoptosis. All
of these results strongly support the idea that an increase
in oxidative stress is one of the mechanisms by which
ethanol induces apoptotic cell death in fetal neurons.
Finally, with respect to the action of anthocyanins, Chen
et al. demonstrated that C3G can recover the reduction of
neurite outgrowth caused by ethanol treatment. Moreover,
this process is mediated by glycogen synthase kinase 3b
(GSK3b) (Chen et al., 2009).

The alterations observed in these systems occur as a
consequence of oxidative stress but the intermediate
mechanisms are already unknown and depend on the
magnitude, pattern and timing of the exposure (as certain
as the genetic susceptibilities to ethanol also exert an
influence on the dose and period of exposure). Thus, it is
possible that oxidative stress only represents a single
molecular process involved in ethanol-induced damage.
Consequently, treatment with antioxidants might not be
enough to counter act the effects of perinatal ethanol
exposure.

Nevertheless, antioxidants (alone or in combination
with other therapeutic agents) might still be good candi-
dates for the mitigation of some of the deficits observed in
individuals with FASD. Further studies in animal models
are warranted to identify the optimal cocktail of antioxi-
dant compounds in addition to test therapeutic strategies
that use antioxidants in combination with other pharmaco-
logical drugs.

CONCLUSIONS

FASD is a major public health problem, being the leading
cause of preventable mental retardation and birth defects
in the Western countries (May et al., 2009). The simplest
method for the prevention of FASD is avoiding any alcohol
intake during pregnancy. However, a widespread and appa-
rently increasing incidence of FASD has been observed
recently (Fig. 2) (Abel, 2006; Riley et al., 2011). Whereas a
great effort should be made to avoid ethanol consumption,
several pharmacological approaches for the prevention of
FASD are currently under active research and some of
them have already generated patents (Martinez and Egea,
2007). Identification of effective interventions and treat-
ments for FASD is, therefore, critical. Ideally, one would
intervene at the time of alcohol exposure, thereby directly
preventing or reducing the amount of alcohol-related dam-
age. Based on the mechanisms involved in the ethanol-
induced damage include neurotrophic agents (Heaton
et al., 2000b), neuroactive peptides (Vink et al., 2005) and
antioxidants. Nutritional supplementation may also miti-
gate alcohol’s teratogenic effects. Nutritional supplements
may compensate for changes in the bioavailability of

FIGURE 2. Current strategies for the prevention and treatment of FASD.

Extracted from Martinez and Egea (2007).
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nutrients due to alcohol metabolism (Lieber, 2000). Chol-
ine supplementation during early postnatal development
reduces the severity of some ethanol-induced neurobeha-
vioral alterations (Thomas et al., 2000, 2009, 2010). Simi-
larly, folic acid (FA) supplementation in young women can
prevent intrauterine growth restriction, neural tube
defects and other congenital anomalies (Eskes, 1997;
Scholl and Johnson, 2000). FA can also ameliorate toxicity
induced by ethanol (Gutierrez et al., 2007; Yanaguita et al.,
2008).

Nevertheless, it is well-known that oxidative stress
plays a pivotal role in the development of the disease.
This increase in the levels of ROS production has direct
consequences on the ethanol metabolism due to its actions
on mitochondrial bioenergetics and in the antioxidant sys-
tem. Future research is warranted to test these
hypotheses.

Different animal models have been used for the study
of FASD but the knowledge about the cellular and molecu-
lar processes are not completely understood. Given the
use of different modes of ethanol administration and dif-
ferent exposure periods, to make comparisons among
studies is a challenging issue and drawing clear conclu-
sions may be difficult to understand though the compari-
son between studies. For this reason, it will be necessary
uniform methodologies (including the same model and
controlling external confusing variables such as dose and
administration procedure, BAC peak achieved, time and/or
duration of exposure) to analyze the effect of prenatal
ethanol exposure on different indicators of oxidative stress
in a systematic manner.

Furthermore, it would be interesting to explore
whether the use of antioxidants later on in life would also
have beneficial effects in FASD models. To date, there is
only one clinical study, showing no significant differences
in the urine levels of lipid peroxidation products in
women who drunk during pregnancy compared with non-
drinkers pregnant women (Signore et al., 2008). It is
important to mention that this study did not evaluate the
oxidative stress levels in the newborns. This is particularly
important because, to date, most studies have only ana-
lyzed the effects of antioxidant compounds in models of
FASD when these are administered concurrently with etha-
nol. The majority of these publications evidence that anti-
oxidant treatment can be beneficial in the amelioration of
some characteristics of FASD (Table 1). However, this strat-
egy has not been explored on humans. Nevertheless,
remains to be clear if the antioxidant therapy can be bene-
ficial in the amelioration of some biochemical and behav-
ioral characteristics in children with FASD. However, for
other neurodevelopmental disorders such as autism (Akins
et al., 2010), attention deficit/hyperactivity disorder
(ADHD) (Chovanova et al., 2006) or fragile-X syndrome
(de Diego-Otero et al., 2009), have been explored the
administration of antioxidants showing beneficial effects in

the mitigation of these disease effects. Within this sce-
nario, antioxidants (either alone or in combination with
other therapies) are strong candidates for clinical trials
design in FASD-affected children to prevent or to revert
deleterious effects of ethanol during neurodevelopment.
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